Interaktive Computergrafik

Vorlesung im Sommersemester 2017 Kapitel 7: Animation und Keyframing (kein Prüfungsstoff)

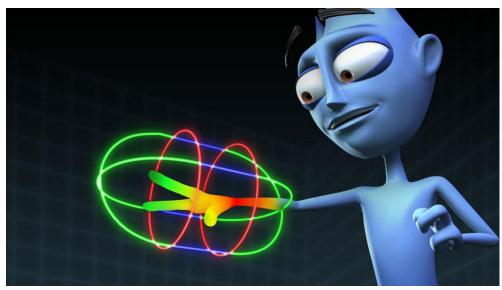
Prof. Dr.-Ing. Carsten Dachsbacher Lehrstuhl für Computergrafik Karlsruher Institut für Technologie

Animation und Keyframing

NOTICE

Inhalt

- Keyframing und kinematische Animation
- Interpolation von Ort und Orientierung
- Inverse Kinematik
- Skinning



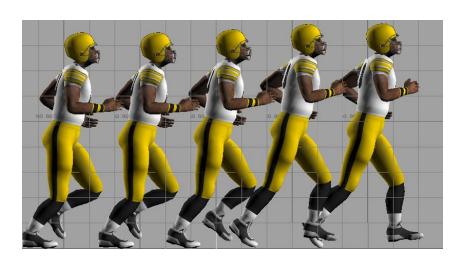
Animation

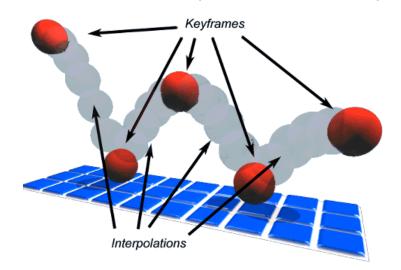
Begrifflichkeiten

- kinematische Animation
 - direkte Kinematik: Bestimmung einer Bewegung aus vorgegebenen, zeitlich veränderlichen Parametern
 - Ort, Geschwindigkeit, Beschleunigung (aber nicht Kraft)
 - Pfad-Animation, z.B. Bewegung entlang eines Pfads
 - inverse/indirekte Kinematik: Bestimmung aus Randbedingungen
- dynamisches Modell (Simulation):
 - basierend auf physikalischen Gesetzen (insb. Kraftgesetze)
 - physikalische Eigenschaften der Objekte
 - Anfangsbedingungen
 - Starrkörper, deformierbare Körper, Flüssigkeiten, ...

Keyframe-Animation

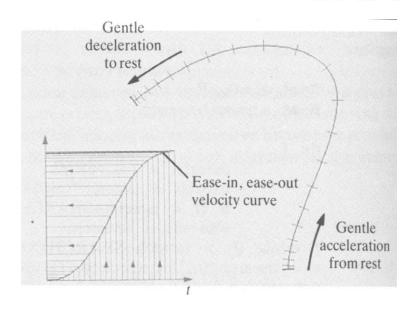
- Vorgabe von "Schlüsselbildern" (keyframes) durch den Animator, anschließende Interpolation (in betweening)
 - verwendet i.d.R. (Kontroll-)Punkte zur Festlegung der Animation
 - klassische Methode der traditionellen Animation
 - direkte Kontrolle durch den Animator
- Fragestellungen:
 - Interpolation von Position, Orientierung, ...
 - Übertragung von Deformationen auf Oberflächen (Skelett→Mesh)





Interpolation

- (stückweise-)linear
- Bézier-Kurven, B-Splines
- Hermitesche Splines
- slow-in, slow-out (auch: ease-in, ease-out)

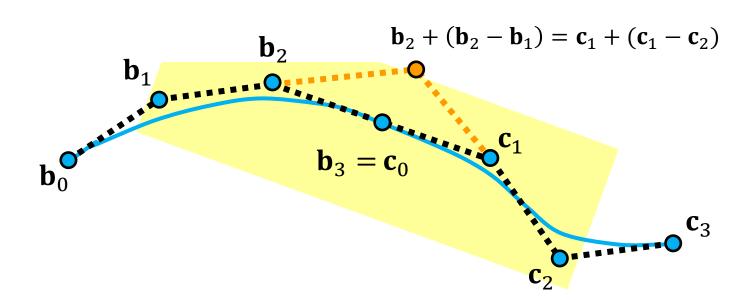


- können wir direkt auf Positionen anwenden, z.B. bei der Pfadanimation
 - Objekt folgt einem vorgegeben Pfad aus Kontrollpunkten
 - Pfadverfolgung zur Generierung der Sicht der ersten Person
 - Bestimmung der Orientierung?
 - Kontrolle über Geschwindigkeit?

Bézier-Splines

Ck-Übergang zweier Bézierkurven (gleicher Grad)

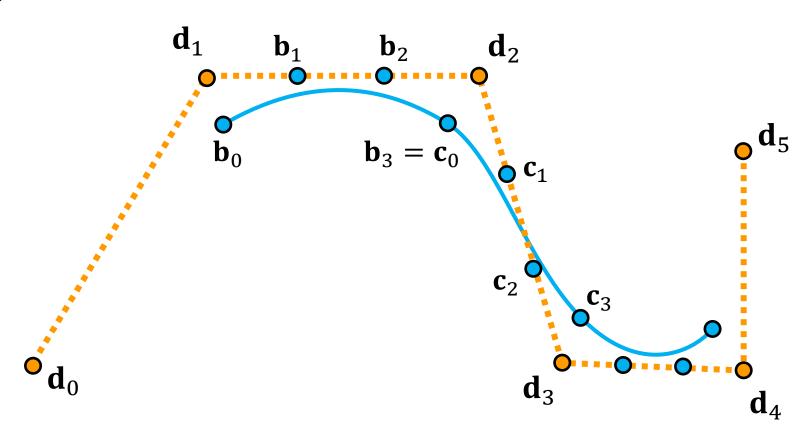
- $F(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{b}_i \text{ und } G(u) = \sum_{i=0}^{n} B_i^n(u) \mathbf{c}_i$
 - $ightharpoonup C^0$ -stetig $\Leftrightarrow F(1) = G(0) \Leftrightarrow \mathbf{b}_n = \mathbf{c}_0$
 - $ightharpoonup C^1$ -stetig $\Leftrightarrow F'(1) = G'(0) \Leftrightarrow \mathbf{b}_n \mathbf{b}_{n-1} = \mathbf{c}_1 \mathbf{c}_0$ (und $\mathbf{b}_n = \mathbf{c}_0$)
 - $ightharpoonup C^2$ -stetig $\Leftrightarrow C^1$ -stetig und F''(1) = G''(0) $\Leftrightarrow \mathbf{b}_{n-1} + (\mathbf{b}_{n-1} - \mathbf{b}_{n-2}) = \mathbf{c}_1 + (\mathbf{c}_1 - \mathbf{c}_2)$
- Beispiel: kubische Bézierkurven und "A-Frame"-Eigenschaft



Bézier-Splines

B-Splines definiert durch A-Frames

- \triangleright statt Bézier-Punkte anzugeben kann man die Ecken der A-Frames festlegen, um einen C^2 -stetigen sog. **B-Spline** zu konkstruieren
- \triangleright diese neuen Kontrollpunkte \mathbf{d}_i nennt man de Boor-Punkte
- > je 4 de Boor-Punkte definieren eine kubische Bézier-Teilkurve

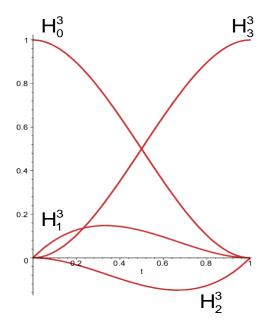


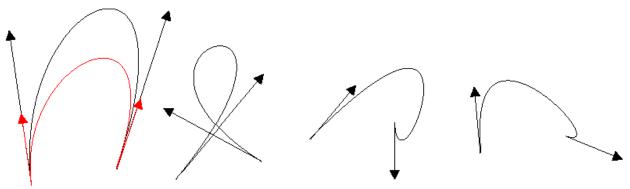
Univariate Interpolation

NOTICE

Hermitesche Splines

- Koeffizienten beschreiben die Endpunkte und Ableitungen/Tangenten
- $f(x) = H_0^3(t) \cdot f(x_i) + H_1^3(t) \cdot f'(x_i) + H_2^3(t) \cdot f'(x_{i+1}) + H_3^3(t) \cdot f(x_{i+1})$
 - $ightharpoonup mit <math>t = \frac{x x_i}{x_{i+1} x_i} \in [0; 1] \text{ für } x_i \le x \le x_{i+1}$





$$H_0^3(t) = (1-t)^2(1+2t)$$

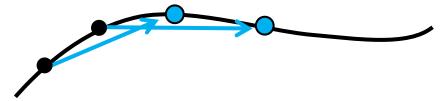
$$H_1^3(t) = t(1-t)^2$$

$$H_2^3(t) = -t^2(1-t)$$

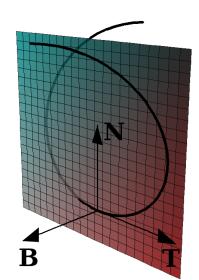
$$H_3^3(t) = (3-2t)t^2$$

Pfadanimation

- Pfad ergibt sich durch Interpolation zwischen Orts-Keyframes
 - 1) Orientierung direkt ebenfalls durch Keyframes definieren
 - 2) Center-of-Interest (COI) Animation Blick gerichtet auf COI, z.B. ein anderes (bewegtes) Objekt oder ein animierter Punkt entlang einer Kurve



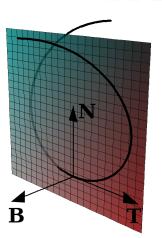
- 3) Orientierung durch Ableitung(en) der Kurve (Frenet-Dreibein)
 - lokales Bezugsystem/Tangenten weisen oft eine schnell variierende Orientierung auf
 - ightharpoonup Kurve r(s): $T = \frac{dr}{ds}$, $N = \frac{dt}{ds}$, $B = T \times N$



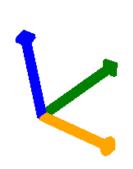
Frenet-Dreibein

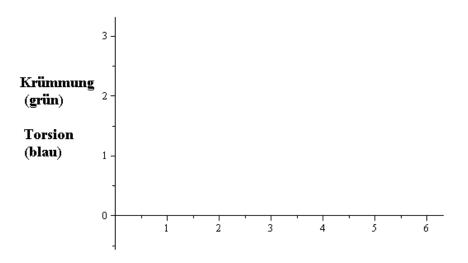
- Ableitung(en) der Kurve (Frenet-Dreibein)
 - lokales Bezugsystem/Tangenten weisen oft eine schnell variierende Orientierung auf

► Kurve
$$r(s)$$
: $T = \frac{dr}{ds}$, $N = \frac{dt}{ds}$, $B = T \times N$



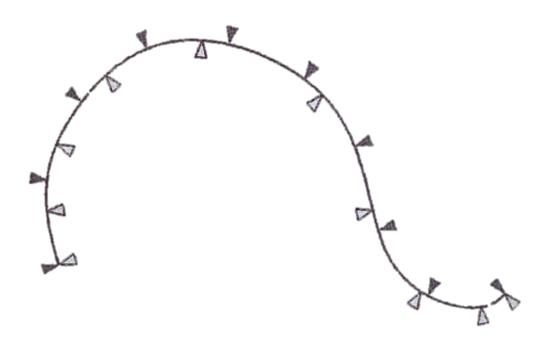
Torus-Knoten mit Tangentialvektor (braun), Normalenvektor (grün) und Binormalenvektor (blau)





Ablaufgeschwindigkeit

- Interpolation zwischen Ort (und Orientierung) durch Splines
- mit welcher Geschwindigkeit werden diese Kurven durchlaufen?
- \triangleright gegeben: interpolierte Positionen r(u) (u ist nicht Bogenlänge)
- gesucht: Steuerung der Geschwindigkeit des Durchlaufens der Kurve



Ablaufgeschwindigkeit von Keyframe-Animationen

Erster Ansatz: Konstanter Geschwindigkeitsbetrag

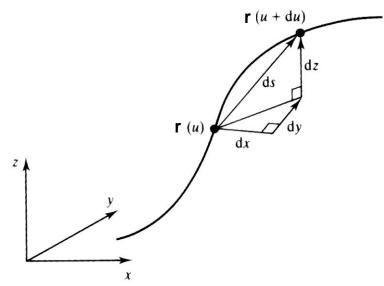
- Bogenlängenparametrisierung $r_{arc}(s)$
- ightharpoonup Umparametrisierung $u \rightarrow s$
- Bogenlänge

$$s(u) = \int_{u_0}^{u} \left\| \frac{dr(u')}{du'} \right\| du'$$

in der Praxis: numerische Integration,
 z.B. Simpson-Regel/Keplersche Fassregel
 (Näherung einer Kurve durch eine einfach integrierbare Parabel)

$$\int_{u_1}^{u_2} f(u')du' = \frac{u_2 - u_1}{6} \left(f(u_1) + 4f\left(\frac{1}{2}(u_1 + u_2)\right) + f(u_2) \right)$$

ightharpoonup damit können wir s(u) berechnen und tabellieren

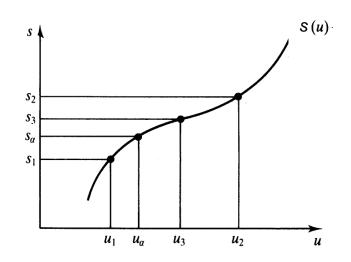


Ablaufgeschwindigkeit von Keyframe-Animationen

Gesucht: Umkehrfunktion u = u(s)

- Schritt 1: Suche durch Bisektion (Intervallhalbierungsverfahren)
 - \triangleright effizient, da s(u) monoton steigend
 - \triangleright suche Intervall $[u_i; u_{i+1})$ so, dass $s(u_i) \le s \le s(u_{i+1})$

- ightharpoonup es gilt: $s = s(u) \Leftrightarrow s s(u) = 0$
- suche Nullstelle,z.B. mit Newton-Raphson-Methode

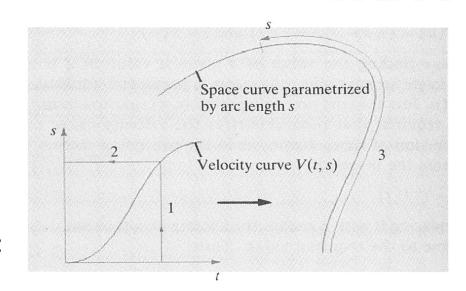


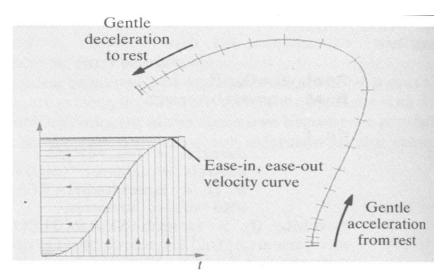
- ightharpoonup \Rightarrow Berechnung von $r_{arc}(s) = r(u(s))$ mit tabelliertem s(u)
 - erlaubt konstante Bahngeschwindigkeit

Ablaufgeschwindigkeit von Keyframe-Animationen V

Steuerung der Geschwindigkeit

- mit einer Geschwindigkeitskurve (ordnet Zeit einer Strecke zu)
- ▶ Bahngeschwindigkeit: $\frac{ds}{dt}$
- ightharpoonup Position entlang der Kurve $r_{time}(t)$:
 - $\triangleright V(t)$ = Zurückgelegte Strecke = Integral über Geschwindigkeit
 - \triangleright s = V(t)
 - $ightharpoonup r_{time}(t) = r(u(V(t)))$





Interpolation von Rotationen/Orientierung

Orientierung (eines 3D-Objekts) ist durch eine Rotationsmatrix definiert

(lineare) Interpolation von	Problem
von Richtungsvektoren?	Länge
von Polarwinkeln?	Singularität an den Polen
von Rotationsmatrizen?	keine Orthogonalität
Eulerwinkeln?	Kardanische Blockade

▶ so nicht ©: Classic Game Postmortem, GDC 2013, David Braben http://www.gdcvault.com/play/1014628/

Euler Rotationen

- ▶ jede Rotation kann durch 3 Rotationen um die Hauptachsen (x, y, z) ausgedrückt werden (Leonhard Euler 1707 1783)
 - man kann auch andere Achsen und Reihenfolgen festlegen
- Probleme bei der Interpolation/Fortsetzung von Rotationen
 - wenn z.B. Kamera-/Betrachterorientierung in einer interaktiven Anwendung repräsentiert werden soll
- ▶ Beispiel: Rotationen um die y-, x- bzw. z-Achse (yaw, pitch, roll) mit Eulerwinkeln ψ , θ und ϕ :

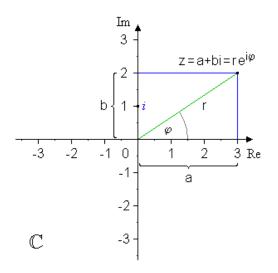
$$\mathbf{R} = \mathbf{R}_{\mathbf{z}}(\phi)\mathbf{R}_{\mathbf{x}}(\theta)\mathbf{R}_{\mathbf{v}}(\psi)$$

- wenn $\psi = 0^{\circ}$ (keine Rotation um die y-Achse) und $\theta = 90^{\circ}$ (um die x-Achse)
- dann ist keine Rotation um die z-Achse mehr möglich, da diese der y-Achse entspricht

Darstellung von Rotationen

Komplexe Zahlen und Quaternionen

- Multiplikation zweier komplexer Zahlen bewirkt
 - Addition der Winkel, Multiplikation der Länge
 - ▶ eine Zahl $z = a + bi = e^{i\varphi} \in \mathbb{C}$ mit |z| = 1 beschreibt eine Rotation



- Idee der Quaternionen (Hamilton, "Elements of Quaternions", 1866)
 - Verallgemeinerung der komplexen Zahlen (u.a. für Rotationen in 3D)
 - Definition von III (Menge der Quaternionen)
 - $p = q(s, x, y, z) = s\mathbf{1} + x\mathbf{i} + y\mathbf{j} + z\mathbf{k},$ mit
 - $i^2 = j^2 = k^2 = ijk = -1$
 - \triangleright ij = k, ji = -k (analog weitere zyklische Permutationen)
 - ightharpoonup Kurzschreibweise: $q(s, \mathbf{v}) = s\mathbf{1} + v_x\mathbf{i} + v_y\mathbf{j} + v_z\mathbf{k}$

- ► Addition: $q_1 + q_2 = (s_1, v_1) + (s_2, v_2) = (s_1 + s_2, v_1 + v_2)$
- Multiplikation (nicht kommutativ!):

$$q_{1}q_{2} = (s_{1}, \mathbf{v}_{1})(s_{2}, \mathbf{v}_{2}) = (s_{1} + v_{1,x}\mathbf{i} + v_{1,y}\mathbf{j} + v_{1,z}\mathbf{k})(s_{2} + v_{2,x}\mathbf{i} + v_{2,y}\mathbf{j} + v_{2,z}\mathbf{k}) = \cdots = (s_{1}s_{2} - \mathbf{v}_{1}\mathbf{v}_{2}, s_{1}\mathbf{v}_{2} + s_{2}\mathbf{v}_{1} + \mathbf{v}_{1} \times \mathbf{v}_{2})$$

Multiplikation mit einem Skalar ist kommutativ:

$$rq = (r, \mathbf{0})(s, \mathbf{v}) = (rs, r\mathbf{v})$$

Konjugat:

$$\overline{q} = \overline{(s, v)} = (s, -v)$$

Skalarprodukt $\cdot: \mathbb{H} \times \mathbb{H} \curvearrowright \mathbb{R}$ $q_1 \cdot q_2 = s_1 s_2 + \boldsymbol{v_1} \cdot \boldsymbol{v_2}$

$$|q| = \sqrt{q \cdot q} = \sqrt{s^2 + v_x^2 + v_y^2 + v_z^2}$$

Multiplikation ist normtreu:

$$|q_1q_2| = |q_1||q_2|$$

Einheitsquaternion:

$$|q| = 1 \iff q\overline{q} = 1 \iff q^{-1} = \overline{q}$$

> jedes Einheitsquaternion lässt sich darstellen als:

$$q = (s, \mathbf{v}) = (\cos \varphi, \sin \varphi \mathbf{n}), \text{ mit } |\mathbf{n}| = 1$$

 \triangleright wir können einen Punkt $r \in \mathbb{R}^3$ mit rein imaginärem Quaternion identifizieren (Einbetten des \mathbb{R}^3 in \mathbb{H}):

$$p = (0, \mathbf{r})$$

- sogenannte reine Quaternionen (pure quaternions)
- ightharpoonup weiter ist der Operator R_q über das Quaternionenprodukt mit einem Einheitsquaternion q definiert als

$$R_q(p) = qpq^{-1}$$

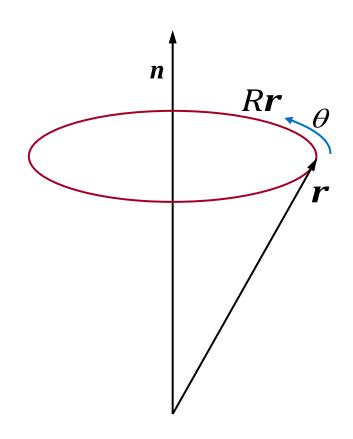
- $ightharpoonup R_q$ beschreibt eine Rotation von r um...? Welche Rotation beschreibt q?
- $a \cdot q \text{ mit } a \in \mathbb{R} \setminus 0 \text{ beschreibt dieselbe Rotation: } (aq)p(aq)^{-1} = aa^{-1} \dots$

Vorbereitung zur Herleitung der Rotationseigenschaft von R_q

 \triangleright Rotation von r um eine normierte Achse n um den Winkel θ :

$$R\mathbf{r} = \mathbf{r}_{\parallel} + \cos\theta \, \mathbf{r}_{\perp} + \sin\theta \, (\mathbf{n} \times \mathbf{r}_{\perp})$$

mit $\mathbf{r}_{\perp} = \mathbf{r} - \mathbf{n}(\mathbf{n} \cdot \mathbf{r})$ und $\mathbf{r}_{\parallel} = \mathbf{n}(\mathbf{n} \cdot \mathbf{r})$

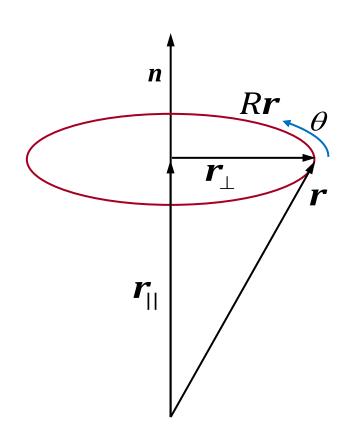


Vorbereitung zur Herleitung der Rotationseigenschaft von R_q

 \triangleright Rotation von r um eine normierte Achse n um den Winkel θ :

$$R\mathbf{r} = \mathbf{r}_{\parallel} + \cos\theta \, \mathbf{r}_{\perp} + \sin\theta \, (\mathbf{n} \times \mathbf{r}_{\perp})$$

mit $\mathbf{r}_{\perp} = \mathbf{r} - \mathbf{n}(\mathbf{n} \cdot \mathbf{r})$ und $\mathbf{r}_{\parallel} = \mathbf{n}(\mathbf{n} \cdot \mathbf{r})$



Vorbereitung zur Herleitung der Rotationseigenschaft von R_q

 \triangleright Rotation von r um eine normierte Achse n um den Winkel θ :

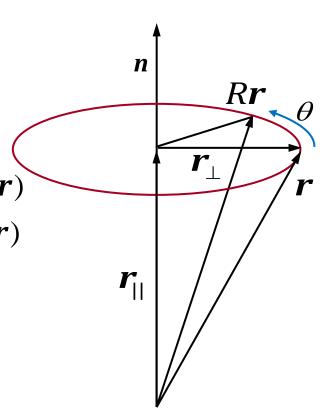
$$R\mathbf{r} = \mathbf{r}_{\parallel} + \cos\theta \, \mathbf{r}_{\perp} + \sin\theta \, (\mathbf{n} \times \mathbf{r}_{\perp})$$

mit $\mathbf{r}_{\perp} = \mathbf{r} - \mathbf{n}(\mathbf{n} \cdot \mathbf{r})$ und $\mathbf{r}_{\parallel} = \mathbf{n}(\mathbf{n} \cdot \mathbf{r})$

Einsetzen und Umformen ergibt:

$$Rr = n(n \cdot r) + \cos \theta (r - n(n \cdot r)) + \sin \theta (n \times r)$$

$$= \cos \theta r + (1 - \cos \theta) n(n \cdot r) + \sin \theta (n \times r)$$



Herleitung der Rotationseigenschaft von R_q

eben definierter Operator

$$R_{q}(p) = qpq^{-1} = qp\overline{q} = (s, \mathbf{v})(0, \mathbf{r})(s, -\mathbf{v})$$

$$= (0, (s^{2} - \mathbf{v} \cdot \mathbf{v})\mathbf{r} + 2\mathbf{v}(\mathbf{v} \cdot \mathbf{r}) + 2s\mathbf{v} \times \mathbf{r})$$
mit $q = (s, \mathbf{v}) = (\cos\varphi, \sin\varphi \mathbf{n})$

$$R_{q}(p) = (0, (\cos^{2}\varphi - \sin^{2}\varphi)\mathbf{r} + 2\cos\varphi\sin\varphi \mathbf{n} \times \mathbf{r})$$

$$= (0, \cos^{2}\varphi \mathbf{r} + (1 - \cos^{2}\varphi)\mathbf{n}(\mathbf{n} \cdot \mathbf{r}) + \sin^{2}\varphi \mathbf{n} \times \mathbf{r})$$

 \Rightarrow Rotation um Achse $m{n}$ um Winkel $m{ heta}=2m{\phi}$

Beschreibung einer Rotation durch ein Quaternion

ightharpoonup Rotation eines Punktes $m{r}$ um Winkel $m{ heta}$ um die Achse $m{n}$ durch das Einheitsquaternion

$$q = (\cos(\theta/2), \sin(\theta/2)n)$$
, mit $|n| = 1$

und dem imaginären Quaternion

$$p = (0, r)$$

Operation

$$R_a(p) = qp\overline{q}$$

eine Rotation beschrieben durch Quaternionen kann natürlich einfach in Matrixdarstellung gebracht werden

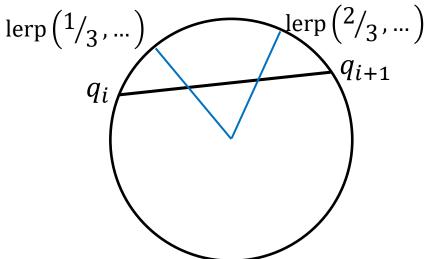
Nacheinanderausführung von Rotationen

- Euler-Theorem: zwei nacheinander folgende Rotationen sind identisch zu einer neuen Rotation
- Produkt von zwei Einheitsquaternionen ist wieder Einheitsquaternion (Gruppeneigenschaft)

$$R_{q^{\prime\prime}} = R_q R_{q^\prime}$$
 mit $q^{\prime\prime} = q q^\prime$

- Vorteile:
 - Eindeutigkeit bei Rotation zwischen Anfangs- und Endorientierung
 - keine Kardanische Blockade

- \triangleright Ziel: Orientierungen als Keyframes q_0, q_1, \dots, q_{n-1}
 - wie sieht interpolierte Rotationsbewegung aus?
 - Glattheit? Segmentgrenzen?
- einfachste Lösung:
 - $p = q(t) = lerp(t, q_i, q_{i+1}) = (1-t)q_i + tq_{i+1}$
 - \triangleright wichtig: q(t) hinterher immer normieren!
 - Vorteil: kein Gimbal Lock
 - Problem: keine konstante Winkelgeschwindigkeit (an den Enden langsamer als in der Mitte)



Sphärische lineare Interpolation von Quaternionen

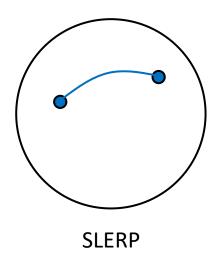
- lerp beschreibt eine Sekante
- slerp (= spherical linear interpolation) beschreibt Bogen auf der 4D-Kugel

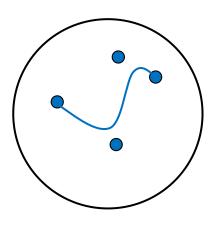
$$\operatorname{slerp}(t,q_i,q_{i+1}) = q_i(\overline{q}_iq_{i+1})^t = \frac{\sin\bigl(\Omega(1-t)\bigr)}{\sin\Omega}q_i + \frac{\sin(\Omega t)}{\sin\Omega}q_{i+1} = \cdots$$

- ightharpoonup mit $q_1 \cdot q_2 = \cos \Omega$
- ightharpoonup für $t \in [0; 1]$ und Einheitsquaternionen q_i, q_{i+1}
- Problem: welche von beiden Richtungen auf der 4D Kugel?
 - ightharpoonup q und -q beschreiben dieselbe Rotation, da $qpq^{-1}=(-q)p(-q^{-1})$
 - Lösung: interpoliere zwischen

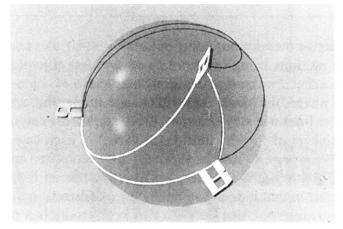
$$\begin{array}{ll} q_i \text{ und } q_{i+1} & \text{ wenn } |q_i-q_{i+1}| < |q_i-(-q_{i+1})| \\ q_i \text{ und } -q_{i+1} & \text{ sonst} \end{array}$$

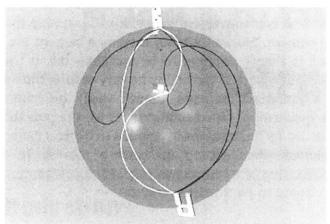
- Problem bei mehr als 2 Keyframes: glatte Übergänge zw. Segmenten
 - Lösung: sphärische Splines (analog zum Kurvenfall)
 - z.B. sphärische kubische Bézier-Kurve über 2 "Eck"-Quaternionen und 2 Ableitungen (siehe [Watt, Watt 92])



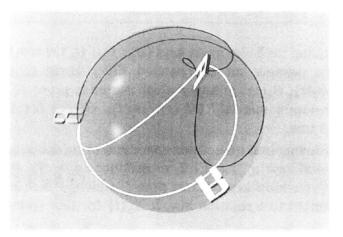


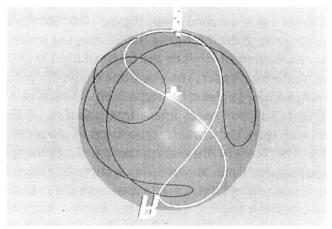
Sphärische Bézier-Kurve



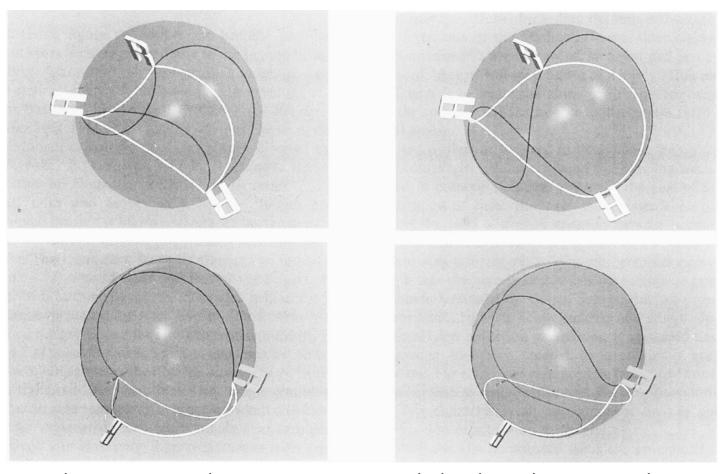


lineare Interpolation (weiß: Quaternionen, schwarz: Eulerwinkel)





kubische Spline-Interpolation (weiß: Quaternionen, schwarz: Eulerwinkel)



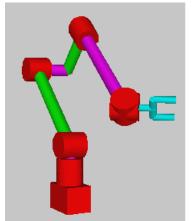
lineare Interpolation (weiß: Quaternionen, schwarz: Eulerwinkel)

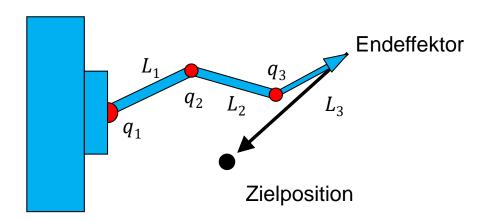
kubische Spline-Interpolation (weiß: Quaternionen, schwarz: Eulerwinkel)

Inverse Kinematik

Grundidee: Bestimmung einer Bewegung aus Randbedingungen

- insbesondere von Gelenkwinkeln eines mehrgliedrigen Modells aus einem Zielpunkt
- Eingabe: Zielkonfiguration eines Endeffektors (Endpunkt eines Arms etc.)
- Ziel der Berechnung: Parameter (Winkel) an den Gelenken
- meist numerische Lösung (oft auch keine analytische Lösung möglich)

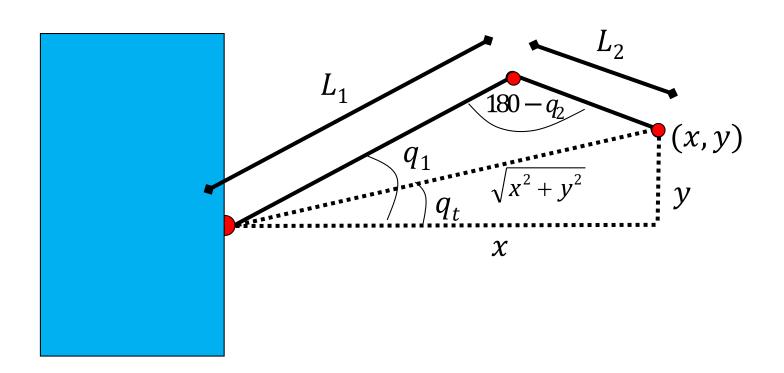




Inverse Kinematik

Einfaches Beispiel (analytische Lösung hier noch möglich)

Animation durch Interpolation des Posenvektors (alle Längen-/Winkelparameter) vom Start- zum Zielwert



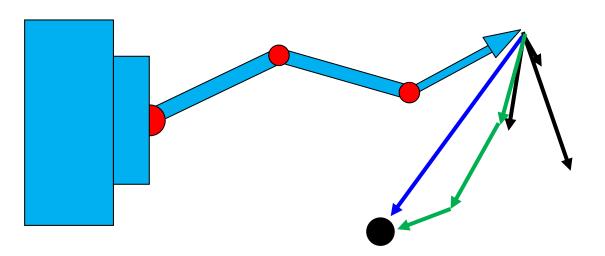
Inverse Kinematik

Skizze der numerischen Lösung

Lage des Endeffektors $\binom{P}{\alpha}$ ist eine Funktion der Parameter Θ:

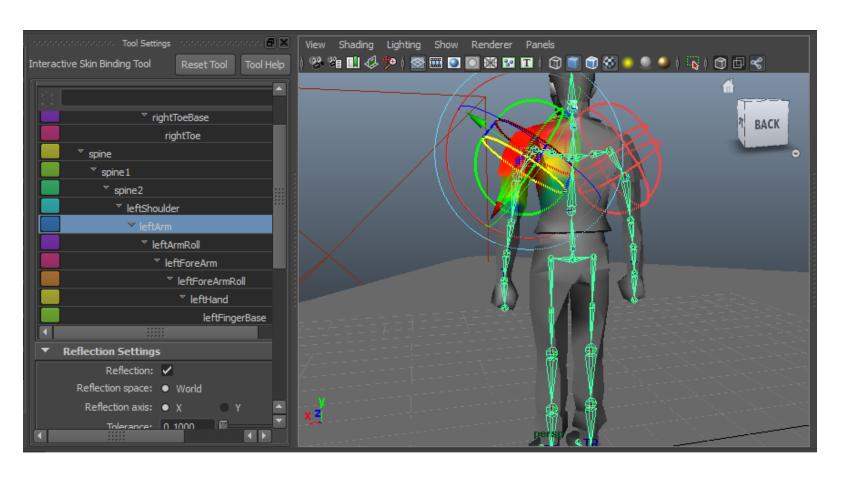
$$\binom{P}{\alpha} = F(\Theta) \quad \text{und} \quad \binom{dP}{d\alpha} = \frac{\partial F}{\partial \Theta} d\Theta$$

- \triangleright Linearisierung: wäre F eine lineare Funktion könnte man die Ziel-konfiguration berechnen/nähern, i.d.R. über-/unterbestimmtes System
 - daher: kleine Schritte, lineare Approximation der eigentlich gekrümmten Bewegung



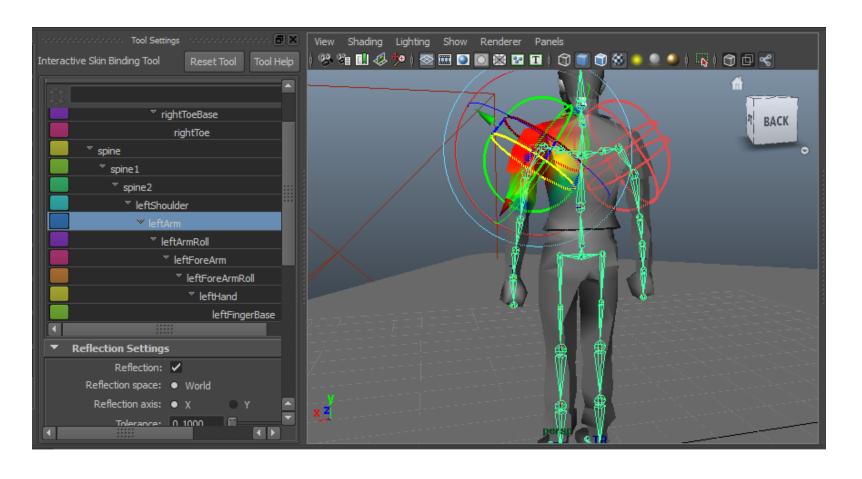
Grundidee

- Skelette repräsentieren einen hierarchischen Bewegungsapparat
- Animation: direkte Kinematik und Interpolation oder inverse Kinematik
- aber: wie überträgt man die Animation auf ein Dreiecksnetz?



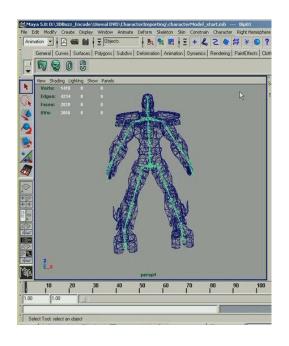
Grundidee

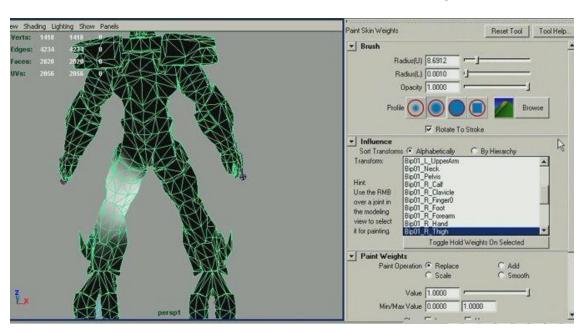
- Vertexpositionen werden durch "Bones" beeinflusst
- für jedes Segment können wir eine Transformationsmatrix (aus Position und Orientierung bestimmen)



Skin-Weights und Berechnung von Vertexpositionen

- Einfluss eines Segments auf einen Vertex wird durch ein Gewicht festgelegt (automatisch mit manueller Nachbearbeitung)
- im Vertex-Shader
 - berücksichtige mehrere Segmente/Transformationen (meist bis zu 4)
 - ightharpoonup berechne transformierte Vertexpositionen $x_i' = M_i x$
 - \triangleright endgültige Vertexposition: Affinkombination $x' = \sum w_i \cdot x_i'$





Ausblicke / Aktuelle Forschungsthemen

http://www.youtube.com/watch?v=j6dwCtcy8DA